
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 2, 61-88 (1982) 

NUMERICAL PREDICTIONS OF THE LAMINAR 
FLOW OVER A NORMAL =AT PLATE 

I. P. CASTRO 

Departunent of Mechanical Engineering, University of Surrey, Guildford, England 

K. A. CLIFFE AND M. J. NORGETT 

Theoretical Physics Diuision, AERE Harwell, Oxon, England 

SUMMARY 

Finite-difference and finite-element techniques have been used to calculate the steady laminar flow 
over a flat piate normal to an air stream, up to a Reynolds number, Re, based on the plate half-width, 
of 100. The boundary conditions simulate a central splitter plate downstream of the body, to prevent 
vortex shedding, so the flow is characterized by a closed recirculation region which grows with 
increasing Re but at Re = O(100) is very similar in size to the turbulent recirculating region that occurs 
in the corresponding high Reynolds-number flow. Motivation came, in part, from the increasing efforts 
of turbulence modellers to calculate complex turbulent flows (containing elliptic regions) and our belief 
that the numerical methods commonly employed for such work can be inaccurate. The predictions are 
compared with each other and with some expectations based on classic solutions of the Navier-Stokes 
equations, and the nature of the numerical errors is demonstrated. It is concluded that effort 
comparable with that expended in developing turbulence models should be directed to developing 
higher-order numerical methods, before the numerical accuracy of predictions of, for example, 
bluff-body flows can be made sufficiently high to sustain detailed discussion of the adequacy of 
turbulence models in such situations. 
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1. INTRODUCTION 

Most of the current understanding of incompressible flow around bluff bodies derives from a 
vast number and variety of experimental studies carried out over a long period. However, 
some workers are now attempting, by the use of various increasingly sophisticated turbulence 
models, to predict bluff-body flows, for which Prandtl’s boundary-layer approximation is not 
valid. For example, Pope and Whitelaw’ have used several turbulence models to calculate 
wake flows behind various obstacles, one of which was an axisymmetric disc normal to a free 
stream. More recently, further studies were reported at the Second Turbulent Shear-Flows 
Conference’ and one of the ‘set-piece’ exercises for the 1980/1 Stanford Conference on 
Complex Flows was flow past a backward-facing step. 

The accuracy of such predictions (which, thus far have all been ‘post-dictions’) is limited 
not only by the validity of the particular turbulence models, but also by the accuracy of the 
numerical methods used to solve the appropriate equation set. The numerical methods 
suitable for parabolic, as indeed for hyperbolic,flows can usually be made as accurate as 
required; most turbulence models have therefore been developed by studying their be- 
haviour in just such applications. However, it is much more difficult to solve the elliptic 
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problems that are encountered in studies of complex flow. Leonard et ak3 have demonstrated 
convincingly that a variation in the turbulence model can lead to changes in the flow which 
depend on the method used to discretize the equations. In particular, they found that a 
high-order difference scheme was necessary if the flow pattern was to reflect faithfully the 
changes in the turbulence model. In contrast, the well-known hybrid scheme4s5 which is 
widely used in turbulence studies, was not satisfactory except when the grid was extensively 
refined. 

It is therefore difficult to separate the consequences of bad physics and bad numerics and, 
in order to investigate the latter, there are obvious advantages in studying the behaviour of 
the numerical schemes for laminar flows. However, since the relative magnitude of the 
various terms in the equations of motion can then be very different-indeed, some terms do 
not of course appear at all-it is most important to choose flows in which numerical errors 
are likely to be representative of those that will occur in the fully turbulent cases. 

The general character of the various numerical methods available to solve flow equations 
has of course been deduced principally from studies of simpler model equations which mimic 
the Navier-Stokes equations (see, for example, Hirt,6 Cheng? Roache'). However, such 
studies cannot provide a clear guide to the accuracy of particular engineering calculations 
and can sometimes in fact be misleading. The only convincing test is to compare numerical 
results with experimental data or analytic flow solutions. A less definitive, but also less 
demanding test is to compare the predictions of different numerical methods. 

In this paper we present a detailed comparison of predictions, obtained using finite- 
difference and finite-element methods, of a carefully chosen laminar flow. Hutton' has 
recently made a similar comparison based on predictions of flow over a backward-facing 
step, but for reasons which will become apparent, that is a much less severe test of the 
numerical techniques. We have chosen to study the steady laminar flow over a two- 
dimensional flat plate normal to a free stream, with a central splitter plate behind to prevent 
vortex shedding. There are, unfortunately, very few quantitative experimental data for flow 
over sharp-edged bodies, but choice of such a flow avoids the well-known difficulty of 
locating the point of separation on a surface of finite curvature, and also, of course, reduces 
the co-ordinate-gridding problems to a minimum. Our calculations are therefore truly 
predictive and we hope to see experimental data compared with them in due course! 

Two finite-diff erence (FD) schemes have been used to represent the steady-state equa- 
tions; they were solved iteratively (time-marching methods to achieve a steady state are 
subject to analogous numerical error'). The hybrid-differencing scheme (HDS), proposed by 
Spalding? was selected principally because it is a method which is widely used by engineers, 
and our second scheme is a generalization of the method originally suggested by Raithby" 
and further studied and developed by Castro" and Lillington.12 This has become known as 
the vector-diff erencing scheme (VDS) and, by recognizing that good accuracy requires that 
the co-ordinate grid should be aligned with the local flow direction in regions of strong 
cross-flow gradients of the dependent variables, it takes explicit account of the local flow 
angle. It is therefore a higher-order scheme although, it must be emphasized, not the only 
possible one. In view of the increasingly evident limitations of HDS (clearly delineated by, 
for example, LeonardI3 and Gresho and Lee'4 we anticipated that solutions obtained with 
VDS would be significantly more accurate than those obtained using HDS. 

The finite element (FB) scheme we have used was originally introduced by Taylor and 
and has been widely applied in solving problems of laminar fluid flow. It has been 

employed, for example, in the calculation of channel-entrance  problem^,^^^^' separated flow 
over a downstream-facing step,lg flow in a cavity with a moving lid2' and separated flow in a 
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u =  u o  , v = o  

u = u o  

pipe expansion.21 Some of its theoretical properties have recently been analysed by Ber- 
covier and PironneauZ2 and L e T a l l e ~ . ~ ~  

It is a Galerkin scheme and is, therefore, in some degree equivalent to a central-difference 
scheme; in consequence, it should provide more accurate solutions for our problem than the 
finite-difference methods, but requires resolution of the boundary-layer regions of the flow in 
order to maintain stability. 

We do not claim that these schemes are in any way the ‘best’ for this particular problem. 
They merely typify those methods in most common use; HDS, in particular, is the method 
already chosen for some predictions of complex turbulent flows (e.g. McGuirk and R ~ d i ~ ~ ) .  

Section 2 begins by outlining the general features of the problem to be solved. We expect 
that some features of the flow, at sufficiently high Reynolds numbers, will be similar to some 
classic analytic solutions; these expectations are also discussed in Section 2. Section 3 
presents the salient features of the three numerical techniques and Section 4 describes the 
results of the predictions, comparing them with each other and with the expected behaviour 
of the flow. 

It should be emphasized that, whilst the present work concentrates on a laminar flow, we 
believe that the general conclusions must be valid for the equivalent turbulent flow or, 
indeed, for any proposed calculations of bluff -body flows using numerical techniques similar 
to those considered here; indeed, we deliberately chose the particular flow studied in this 
paper to ensure that this was so. Our specific reasons for this belief are discussed in the 
concluding section, where it is also argued that there are likely to be further difficulties 
(additional to those evident from this work) in achieving numerically accurate solutions for 
turbulent flows. We do not subscribe to the view that, since turbulent eddy viscosities are 
generally orders of magnitude larger than the laminar viscosity, numerical errors (at least of 
the ‘numerical-viscosity’ type) are much less serious in calculations of elliptic turbulent flows. 

A 

0, I 5 h 

2. THE PROBLEM 

2.1. The flow considered 

Figure 1 is a sketch of the flow geometry and also gives details of the boundary conditions 
used in our calculations. Although there are at present no relevant experimental data, we 
chose an upper boundary condition and blockage ratio, h/D, which could easily be satisfied 
in, for example, a towing-tank experiment. It is anyway helpful to keep h/D relatively small 

u = u o  
v = o  

u =  u o  v = o  

D 

0, I 5 h 

either & = 0 ax 
or v = O  

x/h = - 20 x/h  = LO-L7 

Figure 1. Flow geometry (not to scale) and boundary conditions used for the calculations 
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since this reduces gridding problems in the vertical, y direction. Note that the lower 
boundary at y = 0 upstream of the plate is an axis of symmetry; it is not a solid surface, so 
the only separation point in the flow is fixed at the fence tip at all values of the Reynolds 
number. 

We have used all three numerical methods for calculations with 10 ~ R e r :  100, where 
Re = uoh/v and v is the kinematic viscosity. It was found (see Section 4) that the distance, L, 
to reattachment of the separated shear layer for Re - 70 was about the same as it i s  in the 
high Reynolds-number limit; Arie and Rouse2’ found L/h to be about 18 for Re= O(10‘). 
We would therefore expect in the latter case that the turbulent Reynolds number u,h/v,, 
where v, is an eddy viscosity, will be O(100) in the separated, turbulent shear layer behind 
the plate. More recent measurements in such shear layers confirm this26 and the implications 
of this for calculations of the high Reynolds-number turbulent case are discussed in Section 
5. 

2.2. Flow near the stagnation point 

If the Reynolds number is small enough, so that the thickness, 6, of the viscous boundary 
layer on the upstream face of the plate is small compared to the plate width, then the flow 
around the stagnation point will resemble the classic analytic solution for stagnation flow 
towards an infinite boundary. This solution is found in standard texts (e.g. S~hlichting~~); in 
terms of the co-ordinates used in Figure 1, this solution has 

v = kyf’(<), u =(vk)””f(l), ( = - ( k I ~ ) ” ~ x ;  (1) 

f”+f.f”-f’”l =o, (2) 

the function f(5) satisfies 

where primes denote differentiation with respect to 5 ;  k is a constant that specifies the 
surrounding region of inviscid flow where 

v = k y ,  u = - k x .  (3) 

There is a very simple asymptotic solution at large 5:  

f(5) = 5 - 0.65 (4) 

If this equation is written in terms of appropriate non-dimensional parameters, then 

(~/h)k‘+O.65(k’/Re)~’~+ u/uo = 0, ( 5 )  
where 

k’ = kh/uo. 

An analysis of flow along the stagnation streamline leads to an interesting result. A single 
integration of the u-momentum equation with respect to x yields 

(6) 
A($p(u2+v2)+p) ---)’ - 2vau 2 v J  -.-dx; a2u A H =  

+Pug ugax l+zj 1 ay 

where AH is the change in total head between points 1 and 2, expressed in non-dimensional 
form after division by $pug, and p is the fluid density. 
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Now, since: 

(i) the flow outside the viscous boundary layer is irrotational; 

(iii) * I = -k, where xu marks the edge of the boundary layer; 
a x  x=x,, 

(iv) u#f(y) for x , , < x < O  

it is evident that the rise in total head is given by 2k’/Re and that this increase occurs entirely 
within the boundary layer. This result applies for both a finite and an infinite plate: but in 
the latter case the contribution to AH comes entirely from the first term in equation (6); 
while for a finite plate, if the lower limit of integration is sufficiently far upstream so that 
&/ax = 0, then the value of AH = 2k’/Re is the same, but only the second term contributes. 
Thus for a finite plate the value of k’ is not arbitrary, as it is in some sense for an infinite 
body; k’ is fixed by the potential flow surrounding the body and therefore by the body shape, 
since it is this that determines the variation in the velocity field outside the viscous boundary 
layer. 

We can deduce the appropriate value of k’ from the numerical results by plotting u/uo 
against x/h for the region just outside the viscous boundary layer; we then compare the 
calculated values through the viscous region with the analytic solutions defined by equations 
(1) and (2). Since S/h = O(Re-lt2), we would certainly expect the flow at Re = 100 to contain 
a fairly extensive region that satisfies the classic solution; this region should shrink at 
progressively lower Reynolds numbers. At Re = 10, we might expect very little similarity to 
the analytic solution even close to the stagnation point. 

If the boundary layer remains laminar near the stagnation point, the conclusions as to the 
value of AH remain valid for high Reynolds-number flow, although the wake is certainly 
fully turbulent; but AH is then of course very small and certainly not measurable. It should 
be noted that in the latter case it would in practice be impossible to define a fine-enough grid 
to resolve the boundary layer; this point is discussed further in Sections 4 and 5 .  

2.3. The separated shear layer and recirculating region 

For the equivalent high Reynolds-number turbulent flow the separated shear layer has a 
form similar to a classic plane turbulent mixing layer. Although its detailed turbulence 
structure is rather different-it is distorted by curvature and, near reattachment, by the 
presence of a solid boundary26--the mixing layer still grows at a rate roughly proportional to 
x and independent of Re. Similarly, in the present case we would expect the separated shear 
layer to behave roughly like a classic two-dimensional laminar mixing layer growing between 
two uniform streams. Like many laminar boundary-layer-type flows, this grows like 
( V X / U ~ ) ~ ’ ~ . * ~  At least in the region where the pressure gradients imposed on the layer are 
small, its thickness, a,, is therefore expected to behave like 

where a is a constant not too different from that found for a plane laminar mixing layer. Our 
results are compared on this basis in Section 4. 

We employ fairly crude physical arguments to determine how the distance to reattach- 
ment, I;, and the pressure across the recirculating region (the ‘bubble’) vary with Reynolds 
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number. Assuming that the shear layer grows like ( V X / U ~ ) ~ ’ ~  all the way to reattachment, and 
since this presumably occurs when the layer’s thickness is O(h), we have 

where 6, is the shear-layer thickness at reattachment; thus L/h-Re. Although this will 
clearly not be true for Re = 0(1), it does seem likely that for higher Reynolds numbers the 
length of the bubble will increase linearly with Re. In the limit of Re -+ m, the flow contains a 
vortex sheet emanating from the tip of the fence and trailing downstream to infinity; 
however in practice, of course, both physically and in any attempted steady flow prediction, 
the shear layer becomes unstable long before this limit is reached. 

The lateral forces acting on the bubble must be in equilibrium; if the viscous shear on the 
lower boundary is negligible, then the pressure difference across the bubble integrated over 
its height must balance the viscous shear acting at the top of the recirculating zone integrated 
over its length. The pressure difference can be approximated by the base pressure at the back 
of the fence, and the viscous shear stress by the stress acting at the centre line of the 
separated shear layer: then 

where p is the dynamic viscosity and c p b  the base pressure put into non-dimensional form 
after division by the upstream dynamic head $pug. Now because S,-(~h/Re)l’~, we find 
cpb - [(L/h)/Re]’”, and hence that the base pressure is independent of Reynolds number 
because L/h - Re. This is not a surprising result as the base pressure is presumably set by the 
dynamics of the flow near the separation point, just as it is in the high Reynolds-number 
turbulent case. In Section 4, our numerical predictions are compared with this expected 
behaviour of L and CPb. 

Note finally that errors of the ‘numerical-viscosity’ type are expected to increase the 
spreading rate of the separated shear layer and lead to early reattachment. For the HDS 
scheme such errors, as is well known, increase without limit, in the sense that the effective 
Reynolds number has an upper bound that depends only on the grid details and not on 
further increases in Re. 

3. THE NUMERICAL TECHNIQUES 

The equations governing the steady flow of a Newtonian viscous fluid in a two-dimensional 
region 0 are the Navier-Stokes equations and the equation of continuity: 

au au 1 ap 
ax a y  pax 

av av 1 ap 
ax a Y  P a y  

u-+v-= ---+vv2u, 

u -+ v - = -- - + vv2v, 

au au  --+-=o; 
ax a y  

where u (or v )  is the component of velocity in the x (or y) co-ordinate direction, p is the 
pressure, p is the fluid density and v is the kinematic viscosity. 

An appropriate set of boundary conditions has (u, v) specified over part of the boundary 
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(I?,) and (n . Vu, n . Vu), where n is the outward-facing unit normal, specified over the rest of 
the boundary (rN); the entire boundary is r = r, + r,. 
3.1. The finite-difference methods 

turbulence models which allow, each equation to be written in the form 
The majority of workers currently predicting high Reynolds-number elliptic flows use 

auJ, avJ, a -+-=- rx- +- ry- +s$; 
ax ay ax ( 3 aay ( 

where J, is the dependent variable, S, is a source term, and rx,y are diffisivities. Each of the 
equations is then solved using the same differencing scheme. In the case of the equation 
expressing the transport of turbulence energy, k, then J, would be k,rx,y would involve a 
turbulent Prandtl number and S, would contain the production and dissipation terms. It 
should be noted that, in many regions of a typical flow, S, would be the dominant term in 
the equation. In a laminar flow, equation (1 1) represents the momentum equations only, so 1,6 
is u or u, l?x,v is the laminar viscosity and S, is simply the pressure-gradient term. The 
coupled problems of determining the pressure field and satisfying continuity are dealt with by 
deriving and solving a pressure perturbation equation, as described by Patankar and 
Spalding.” The momentum equations are then solved with the pressure gradients treated as 
known sources. 

Equation (1 1) is written in finite-difference form by integrating over finite control volumes, 
like that shown in Figure 2. Cell boundaries are placed half-way between adjacent nodes, 
linear variations of the flow parameters are assumed and equation (11) becomes 

where the AJ coefficients contain convective and diffisive flow rates. Equation (12) is solved 
for everywhere by using a standard alternating-direction implicit (ADI) scheme; details of 
the whole procedure can be found in the literature (e.g. Gosman et al.,’ Roache8 and Pope 
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Ax 

FE sw s 
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Figure 2. Unit of the finite-difference grid, showing control volume (dashed lines) surrounding point P. 
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and Whitelawl). it should be noted that, in common with other workers (e.g. Fromm and 
Harlow,29 Lilly3' and Deardoff31) and as required in the method for calculating the pressure 
field, we used a staggered grid with velocities defined at cell boundaries and pressures at cell 
centres. 

It is well known that the finite-difference matrix obtained by central differencing of the 
convective terms in the flow equations is not diagonally dominant if the mesh Reynolds 
number Re, exceeds two, where Re, is defined thus in terms of the grid spacing Ax: 

Re, = u,Ax/v. (13) 
In this circumstance, the usual methods of solution, typified by ADI, are sometimes unstable 
and may not converge. This difficulty is often avoided by upwinding the convective terms or, 
at best, through a hybrid scheme in which central differencing is used where possible 
(Re, <2), and upwind differencing is used e l ~ e w h e r e . ~ ~ , ~  As indicated previously, it is 
possible to analyse these finite-diff erence equivalents of equation (1 1) analytically, but this 
has almost always been done for cases where S,  = 0 and 9 is a scalar variable. For a 
one-dimensional scalar convection-diffusion equation it has been shown many times that 
upwinding, unlike central differencing, gives the exact solution asymptotically as Re, -+ m. 
There are, however, first-order error terms which act like extra diffusion and can dominate 
real diffusion if Re, > 2; in this case, it is common in the hybrid-differencing scheme to drop 
the real diffusion terms altogether, which will at least reduce numerical-viscosity errors. The 
HDS used here follows this procedure. In addition, it has been shown that, in a two- 
dimensional flow, upwinding can be inaccurate unless the co-ordinate grid is aligned with the 
flow d i r e ~ t i o n , ~ ~  that even in one dimension upwinding can be inaccurate at large Re, if the 
equation is n~n-linear?~ and that the presence of significant source terms can alter the whole 
behavior of the differencing scheme.12 

The standard hybrid-diff erencing scheme was consequently not expected to give accurate 
results for the present flow at the higher Reynolds numbers. As mentioned earlier, we have 
therefore also used a vector-differencing scheme (VDS), which is in fact a modification of the 
scheme proposed by Raithby." In this scheme, if Re, exceeds two, the value of u in the 
u-momentum equation at, for example, the west boundary of the cell (this is written u, and 
is to be distinguished from uw which is the value of u at the adjacent node, see Figure 2) is 
calculated by interpolation between u values at surrounding nodes, with interpolation always 
in an upwind sense. Thus the interpolation scheme depends explicitly on the flow angle, 
tan-' (vw/uw), with an interpolation made between uw and usw if vW/u,<2AylAx; otherwise, 
with u and v both positive as in Figure 2, the interpolation is between usw and us. This 
procedure distinguishes the present scheme from that used by Raithby" who put u, = usw if 
v,lu,> 2AylAx. 

This scheme introduces additional terms like Aswusw into the right hand side of equation 
(12). For each node P there are at most only an extra two terms, but over the whole flow 
field all four extra nodes may be used, so that the difference matrix may be significantly 
wider-banded. Furthermore, although diagonal dominance is no longer assured, the differ- 
ence matrix for Rem>2 is in general much closer to diagonal dominance than is the 
central-difference matrix (possible instabilities are, in fact, bounded). In the present work all 
these extra terms are placed in the 'known' source term, S,, so previous values for usw, etc. 
are used. This enhances the stability of the scheme and allowed us to use the same 
ADI-solution algorithm that was used with the HDS method. In view of studies of the 
accuracy of schemes like this for two-dimensional scalar equations,1°-12 we anticipated some 
improvement of accuracy, particularly in (and consequently downstream of) regions where 
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transverse velocities were of the same order as axial velocities. We did not, however, expect 
much improvement in regions where u >> 2, and Re, >> 2 since the scheme then reduces to 
HDS. Alternative higher-order methods, like the scheme recently suggested by Leonard,35 or 
the 'source-correction' modification to VDS proposed by Lillington,12 may be rather better 
in such regions. 

3.2. The finite-element method 

The natural description of the finite-element method is in terms of various function spaces. 
?Ve write H'(in) to represent the space of all functions whose derivatives are square- 
integrable over in, and Hb(in) is the more restricted space of all functions which belong to 
H'(in) and are zero on r,,. The starting point for the finite-element discretization is a weak 
form of the flow equations (10) and the boundary conditions. We introduce r2 and 6 that 
belong to H'(in) and satisfy the boundary conditions on r,. The weak formulation of the 
Navier-Stokes and continuity equations that we employ is: 

find (u, v, p )  such that 

u -9  belongs to &,(in); 
u - 9 belongs to Hb(in); 

p belongs to H'(fi); 

and 

la (uilu+vilu+lifp)w d i n + v l  Vu . Vw din= f,w d r ,  for all w in Hb(in), ax a y  p a x  

I, ( u g + v $ + j $ ) w  ciin+vb Vv . V w  din= f0w d r ,  for all w in Hb(in), (14) LN 
I, ( g + g ) q  din = 0, for all q in H'(S1); 

where fu (or f u )  is the value of n . V u  (or n . Vv) on r,, and w and q are test functions. 
It is easy to see that a classical solution (that is a solution having continuous derivatives of 

all orders appearing in the equations) is also a weak solution, and that any weak solution that 
has sufficient continuity is a classical solution. It should be noted, however, that the weak 
form also allows less smooth solutions, and it therefore is a generalization of the classical 
form . 

An approximate solution of the flow equations is obtained by requiring that the flow fields 
belong to particular finite-element spaces of limited dimension. The functions in the 
finite-element spaces W h  (in) and Q"(in) also have square-integrable first derivatives, and 
such functions that in addition are zero at the boundary are members of Wb(in). The 
superscript h is some measure of the element size, and also of the dimension of the function 
spaces, so that any function in H'(R) can be approximated with arbitrary accuracy by a 
member of a finite-element space for sufficiently small h. 

If iih and ih  belong to Wh((n), and approximately satisfy the boundary conditions on r,, 
then the finite-element representation of the flow is obtained thus from the flow equations in 
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weak form: 

find (u", v", p") such that 

u " - 6" belongs to Wb(fi), 

oh - 8 " belongs to W&(fi), 

ph belongs to Q"(n); 

and the equations of (14) are satisfied with u", u", ii", 6", p", w" and qh replacing 
u, u, 6,G, p, w and q. The trial functions u", u" and ph are determined if the weak forms of 
the flow equations are satisfied exactly for a sufficient number of test functions W" and q". In 
the Galerkin method, these test functions span the spaces Wk(0) and Qh(fi). We note that it 
is not possible to choose these spaces a r b i t r a r i l ~ , ~ ~ , ~ ~ ;  indeed this is why the formulation is 
necessarily in terms of separate finite-element function spaces for the velocity and pressure 
fields. An injudicious choice of these distinct spaces leads to equations that do not determine 
the pressure uniquely. 

Such finite-element spaces have been discussed many times (see for example Zien- 
kiewicz;*), so we give only a brief description of our own method of calculation. The region 
fi was divided into quadrilaterals, which are related through an isoparametric mapping to a 
basic rectangular element. Each such element has nine nodes (see Figure 3), and a basis 
function is associated with each node which has value one at that node but is zero at all other 
nodes. Each basis function is a biquadratic function of the co-ordinates over each rectangle 
so that it is non-zero only on those elements that contain the particular node. This set of 
functions provides a basis for the finite-element space W"((n), and Wk(fi) is obtained by 
omitting those functions associated with nodes on the boundary rD; the velocity fields are 
sought within these spaces. A basis for the pressure space Qh(fi) is obtained using the same 
elements; however, we now associate basis functions only with the vertex nodes and the 
functions are bilinear in the co-ordinates. This combination of approximations leads to a 
pressure field that is unique up to a constant. In fact, it has been shown that, with suitable 
restrictions on the problem, this particular approximation converges to the solution of the 
Navier-Stokes equations as h -+ 0.22*23 

This procedure leads to a set of non-linear equations for the nodal values, which is solved 

3 

6 

0 

1 

Figure 3. Basic nine-noded-quadrilateral finite element, with basis functions for the u and u fields at all nodes and 
functions for p defined at nodes 1 to 4 



LAMINAR FLOW OVER NORMAL FLAT PLATE 71 

by a Newton-Raphson algorithm. The linear system of equations produced at each iteration 
is solved using the frontal method.39 

Although the finite-element approximation is derived in a very different way, it has 
features in common with central-difference approximations. In particular, the leading-order 
truncation error is proportional to the third derivative of the velocity. This leads to 
oscillating solutions when the mesh Reynolds number exceeds two in regions where the 
variables are changing rapidly. Thus, in order to obtain oscillation-free solutions, it is usually 
necessary to resolve the boundary layers present in the flow.14 The other feature of the 
method is that the approximation of the convective terms is such as to 'almost conserve' the 
total head &(u2 + u") + p) of the fluid in regions of irrotational flow (there is a small error 
because the continuity equation is only approximately satisfied). This is in contrast to the 
finite-difference schemes described in the previous section, which do not have this property; 
the consequences of this are discussed in Section 4.1. 

3.3. Boundary conditions and gridding 

Calculations of the potential flow about a bluff body suggest that the obstacle has no 
influence upstream at distances exceeding ten times the body height?' the upstream 
boundary was therefore fixed at x /h  = -20. The appropriate inlet boundary condition has 
u = uo and u = 0. The downstream boundary was generally placed at x / h  = 40-47, as 
calculations with x/h increased to 64 showed that the downstream boundary was having no 
effect on the recirculation region in the shorter channel. The finite-element calculations had 
Neumann boundary conditions at the outlet with au/ax=O and au/ax=O, but in the 
finite-difference calculations it was convenient to set u = 0. 

Symmetry conditions were imposed along the stagnation streamline so that au/ay = 0 and 
v = 0. A splitter plate extended downstream from the plate so that here both velocity 
components were set at zero; at the upper boundary, the velocity fields were fixed with 
u = uo and v = 0. Thus all the boundary conditions were close to what could be realized in a 
towing-tank experiment, which is probably the simplest way of obtaining relevant experi- 
mental data. 

It is not practicable to cover such an extended region of flow with a uniform grid and yet 
provide sufficient refinement near the obstacle, particularly at the separation point. In order 
to obtain good accuracy, we would expect that the grid spacing there must be some small 
fraction of h. We employed various finite-difference grids to achieve a satisfactory descrip- 
tion of the flow, but most results were obtained using one of the three grids specified in 
Table I. Grid 1, the basic grid used for much of the work, had minimum mesh spacings, Ax/h 
and Aylh, around the plate tip of 0.06 and 0.014 respectively; grid 2 had rather more 
definition in the irrotational region upstream (x/h'Z-2);  grid 3 had more resolution in the 
viscous region near the plate itself. All three grids had identical y-node deployment, but 
other distributions were studied during the course of the work; the influence of such changes 
in the y-mesh is discussed where relevant. 

One of the major advantages of the finite-element method is that it is easier to concentrate 
grid nodes in appropriate regions without wasting computational effort elsewhere. Table I1 
records the grid used for calculations at Re= 100, and Figure 4 illustrates how a finite- 
element grid can concentrate nodes into regions where the dependent variables have large 
gradients; in this case, the nodes are deployed beyond the plate to follow the deflection of 
the centre of the separated shear layer. This grid was also used for some calculations at lower 
Reynolds number, but for Re< 100, we also contracted the grid downstream from the 
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Table I. Finite-difference grids 

xlh, x < O  x/h,  x > 0  
Ylh 

Grid 3 Grid 1 Grid 2 Grids 1,2,3 Grid 1 Grid 2 Grid 3 

0.0 
0.02 
0.06 
0.11 
0.16 
0-22 
0.30 
0.40 
0.50 
0-60 
0.70 
0-78 
0.85 
0.90 
0-93 
0.96 
0.98 
0.993 
1.007 
1.02 
1-04 
1.07 
1.11 
1.15 
1.19 
1-24 
1.32 
1.42 
1.55 
1.70 
1.9 
2.2 
2.6 
3.0 
3.5 
4.0 

-20.0 
-17.0 
-1 1.0 
-8.0 
-6.0 
-4.4 
-3.2 
-2.3 
-1.7 
- 1.3 
-1-0 

-0.75 
-0.55 
-0.40 
-0.27 
-0.17 
-0.09 
-0.03 

-20.0 
-18.2 
- 14.6 
-11.8 
-9.8 
-8.0 
-6.6 
-5.6 
-4.8 
-4.2 
-3.7 
-3.3 
-2.9 
-2.5 
-2.1 
-1.7 
-1.3 
-1.0 

-0.75 
-0.55 
-0.40 
-0.27 
-0.17 
-0.09 
-0.03 

-20.0 
-18.0 
-14.0 
-10.0 
-7.11 
-5.42 
-4.13 
-3.14 
-2.39 
-1.81 
-1.38 
-1.04 

-0.79 
-0.59 
-0.44 
-0.33 
-0.24 
-0.175 
-0,125 
-0.087 
-0.058 
-0.035 
-0.018 
-0.005 

0.03 
0.09 
0.17 
0.27 
0.40 
0.55 
0.75 

1.00 
1.30 
1.70 
2.25 
3.10 
4.2 
5-6 
7.4 
9.6 

12.2 
15-6 
21.0 
28.0 
36.0 
40.0 

0-03 
0.09 
0.17 
0.27 
0.40 
0.55 
0-75 

1.00 
1.30 
1.70 
2.25 
3-10 
4.2 
5.6 
7.4 
9.6 

12.0 
14-7 
17.7 
21.0 
25.0 
29.7 
35.0 
43.0 
47.0 

t 

0.005 
0.019 
0.037 
0.062 
0.097 
0.143 
0-206 
0.292 
0.41 
0.57 
0.79 

1.08 
1.48 
2.02 
2.76 
3.77 
5.14 
7.0 
9.5 

12.5 
17.0 
22.0 
28.0 
35.0 
43.0 
47.0 

4.4 
4.7 Grid 1 
4-9 Grid 2 50 x 40 
5.0 Grid 3 50 x 40 

40 X 40 b X Y )  

barrier so that nodes were placed at points with the same value of x/Re. This distributes the 
same number of nodes in the recirculation zone at all values of Re, and leads to an improved 
description of the growth of the shear layer for smaller values of the Reynolds number. 

4. RESULTS AND DISCUSSION 

For this study, we have calculated flows at various Reynolds numbers, using many different 
gridding arrangements for each of the three numerical methods. We cannot of course present 
all such results, or indeed a full description of any particular prediction; rather we intend, as 
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Table 11. Finite-element grids. This table locates the 
positions of the corner nodes of the quadilateral ele- 
ments used to discretize the flow geometry (nodes 1 to 
4 in Figure 3). Basis functions for the pressure fields 
are localized only about these corner nodes; velocity 
fields are described by basis functions at these points 
and also by functions centred at the midpoint of the 

edge of each element and at the element centre 

Ylh xlh 
~ 5 0 . 0  ~ 2 2 . 5 4 h  ~ 5 0 . 0  x 20.0 

0.00 0.00 -20.0 0.0 
0.06 0.06 -9.5 0.12 
0.16 0.16 -5.2 0-46 
0.30 0.30 -2.75 1.08 
0.50 0.50 -1.50 1.98 
0.70 0.70 -1.00 3.18 
0.85 0.88 -0.60 4.68 
0.93 1.02 -0.34 6.49 
0.98 1.30 -0.20 8-61 
1-00 1.60 -0.12 11.03 
1.02 1.90 -0.06 13.77 
1-07 2-10 -0.025 16.81 
1.15 2-25 0.0 20.17 
1.24 2.40 23.84 
1.42 2.55 27-83 
1-70 2-70 32.12 
2.2 3-0 36.74 
3.0 3.7 41.67 
4.0 4.4 47.00 
4.7 4.8 
5.0 5-0 

Values of y/h for O.O<x/h C2.54 are obtained by lineaf 
interpolation between values used at the end of this interval. 
The finite-element grid is 32x20 elements in the x and y 
directions. 

indicated earlier, to pick out the most significant observations and analyse salient features of 
the results. Now a t  low Reynolds number the only practicable criteria for establishing the 
accuracy of a prediction are that the results should be independent of the chosen grid, and 
that the different numerical methods should lead to similar results. Indeed, we found that it 
was not difficult to obtain accurate solutions for this type of flow. In contrast, at high 
Reynolds numbers we can also check numerical results against the analytic predictions set 
out in Section 2. We have therefore concentrated on analysing results at higher Reynolds 
number, particularly for Re = 100, where we expect that the several numerical methods may 
well lead to significantly different predictions. 

The results are assessed by posing these questions: 
(i) At the highest Reynolds number considered (Re = loo), how do the predictions differ in 

the region upstream of the fence where x S O ?  If we achieve a reasonable resolution of the 
upstream boundary layer, and accurately predict variables along, say, x = 0, then down- 
stream differences must result from local errors rather than convection of errors generated 
upstream. (We have shown previously, for a turbulent flow, how errors that arise around a 
separation corner can be propagated downstream, and thus can confuse identification of the 
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Figure 4. Disposition of finite elements near the plate, showing concentration of elements at the plate tip and OR the 
face of the plate, and the deployment of a high density of elements downstream in the shear layer 

source of errors.”) We also note that if upstream solutions are accurate for Re= 100, then 
there is no reason to doubt the numerical accuracy of calculations for lower Reynolds 
number. 

(ii) How do the various nurnericaj solutions differ in their detailed description of flow 
downstream of the fence: in particular, their prediction of the growth of the shear layer as a 
function of (x/Re)”*, the increase in length of the recirculation region at large Reynolds 
number, and the variation in surface pressure? 

Subsidiary questions, for example the gridding required for grid-independent solutions, or 
the effect of downstream boundary conditions, will be addressed as necessary but within this 
framework. 

4.1. l?he UpSWeUFR POW ( X s o )  

We begin by discussing the numerical errors in calculations for the irrotational region 
upstream of the viscous boundary layer. Figure 5 shows the change in total head AH along 
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Figure 5. Change in Total Head along the stagnation streamline. VDS, Grid 1, Re =: A, 10; 0, 50; 0, 100. VDS, 
Grid 2, Re = 100; +. EE, Re = :X, 30; 0,100 

the stagnation streamline (y  = 0) for two finite-difference and one finite-element simulation 
at various values of Re. The FD predictions were obtained using the vector scheme 
(hybrid-scheme results were identical along y = 0 because z1 = 0). The sets of x co-ordinates 
used in the two FD studies and the positions of the FE nodes are given in Tables I and 11. 

Since we expect that the FE method will conserve energy to good accuracy, it is no 
surprise to find that the only significant changes in AH occur in the viscous region, but the 
FD results are very different. First, since mesh Reynolds numbers greatly exceed two except 
very close to the plate, upwinding leads to significant errors; however, such errors are 
reduced by refining the grid in the region where mesh Reynolds numbers were inevitably 
large. It is also clear that there is an upper bound on the errors as the Reynolds number is 
increased: Figure 5 includes predictions (obtained with grid 1) at Re = 10 and Re = 50, and 
these latter results are almost identical with the predictions for Re = 100. This behaviour is 
different from that of the scalar convection-diffusion equation, where errors due to upwind- 
ing continue to increase with Reynolds number, but it is not unexpected since C a ~ t r o ~ ~  has 
found similar behaviour in a comparable study. The explanation is straightforward: along the 
stagnation streamline the solution of the upwinded finite-difference form of the flow 
equations must effectively satisfy the equation 

where, as usual, the last term represents the numerical diffusion, which depends on the grid 
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spacing Ax. In the irrotational region a single integration leads to 

AH]; = J 2 d  - ($==uAx- d U  dx)/$pu& 
1 ax d X  

and if limit 1 is sufficiently far upstream, then 

u d(u/u,) Ax AH=-.-.- 
ug d(x/h) h - 

At large Re, ulu, # f(Re), so the change in head that arises from the use of upwinded finite 

differences does not depend on Re; it is greatest where u- is largest and decreases with 

Ax/h, as the results of Figure 5 demonstrate. Notice that the errors depend only on local 
conditions, and therefore reduce again as x+O. The implications of these errors in the 
description of the inotational region, which arise essentially because we must there solve an 
inviscid flow with a method more suited to viscous flow, will be discussed in Section 5. 

If we turn now to the prediction of the viscous boundary layer, Figure 6 shows u and v at 
Re = 100 expressed as values of the boundary-layer functions f(5) and f’(5) that were defined 
in Section 2.2. The results were computed using the vector scheme and a grid (grid 3, Table 
I) similar to grid 1 but refined in the region - 2 5 x / h  5 2 .  The k’ value required to fit the 
(small) linear u-velocity region [equation (5 ) ]  was k’ = 0,825, and it is clear that the expected 
behaviour is obtained up to 5=2(x/h=-0*18) and for y/h?O.35. In this region mesh 
Reynolds numbers are below two, so that hybrid-scheme results are very similar (central 

d U  

d X  

V 

/ 
1 0  

0 8  

0 6  

O L  

0 2  

0 
0 0 2 5  0 5  075  10 125  1 5  175 20 2 2 5  2 5  

r 
Figure 6. Boundary layer functions. Re= 100. f(c):A, VDS; V, Fe. f’(c), VDS, y/h = :o, 0.04; f, 0.35; 0, 0.55. 

, analytic solution f’(c), FE, y/h = :U, 0.06; X, 0.5.- 
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differencing invoked by both schemes). The FE-prediction results included in the figure, 
which are in fact obtained by taking k' = 0.77, are also close to the analytic solution. At lower 
Reynolds numbers the viscous region is physically larger of course, but the influence of the 
finite width of the plate increases, so that at Re= 10 no region similar to the classic 
stagnation-point flow was predicted. 

Whilst it is clearly possible to obtain good resolution of the viscous layer at Re = 100 with 
a very fine grid, it is obvious that totally impracticable gridding would be required at the 
much higher Reynolds numbers associated with a turbulent wake flow. It is therefore 
important to determine whether good resolution of the viscous boundary layer is in fact 
necessary inorder to obtain accurate predictions downstream of the fence. To this end, we consid- 
ered the predictions of the flow in the region of the fence tip, where the boundary layer separates. 

Figure 7 shows predictions of the velocity vector along y!h = 1, for -1 5 x/h 5 0 ,  that is 
through the separating boundary layer. The flow angle results [Figure 7(a)] are all very 
similar, which implies that the streamline directions are reasonably predicted even for the Fz) 
solutions on a coarser grid (grid 1). However, FD predictions of the velocity magnitudes 
(both components) are rather lower than the FE results. Indeed, the grid 1 VDS and HDS 
solutions in Figure 7(b) show that the maximum total kinetic energy ((uz + v2)/u& which 
presumably is found at the edge of the separating boundary layer, is about 25 per cent less 
than that given by the Fl3 calculation. An increased resolution near the fence, as in results 
for grid 3 shown in Figure 7(b), significantly reduces this difference. 

Now we expect that any increase in the energy available in the separated shear layer will 
increase the distance to the point of reattachment, provided that the flow angles along, say, 
y/h = 1, x < 0, (or x = 0, y/h > 1) are identical. Thus the FE solution predicted reattachment 

3 5  

3 0  

2.5 

2.0 

$ 
1-5  

I I  I 1  I I I I  I 

I" 

-10 -09 -08 -07 -06 -05 - 0 L  -03 -02 -01 00 

x/h 

Figure 7(a). Direction of velocity vector (u/u)  upstream of fence tip, y/h = 1.0; Re = 100. 0, HDS Grid 2;  A, VDS 
Grid 1; +, VDS Grid 3;  0, FE 
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Figure 7(b). Total kinetic energy ((u2+u2)/u$) upstream of fence tip. Legend as in Figure 7(a) 

at about xlh = 25, compared with VDS predictions of xlh = 20. Now some of this difference 
may be due to errors in the VDS solution downstream of the plate; indeed the grid 3 VDS 
solution shown in Figure 7 actually gave a slightly smaller value of L/h than the correspond- 
ing grid 1 solution. However, this was almost certainly because grid 3 uses a coarser grid 
downstream to admit a finer resolution near the plate itself (see Section 4.2 for a more 
detailed discussion). Despite these complicating factors, the evidence indicates that good 
resolution of the flow near the fence is necessary for an accurate prediction of the high 
velocities that occur near separaiton. Figure 8 emphasizes this point: here the previous 
VDS-grid 1 solution for y/h = 1 and x < O  is compared with results obtained from VDS 
predictions using coarser y -meshes (but the same x-mesh). Interestingly, the total kinetic 
energy near separation is actually increased as the grid becomes coarser [Figure 8(b)], but 
the flow angle is drastically reduced [Figure 8(a)], so that reattachment occurred rather 
earlier: L/h was about 15 per cent lower than the grid-1 prediction in the worst case. 
Although the results will not be presented here, comparisons between the various predictions 
for conditions along xlh = 0, ylh > 1 lead to very similar conclusions 

4.2. The separated shear layer 
Figure 9 shows the growth of the shear layer, plotted in the form suggested in Section 2.3, 

for 3 0 r R e s  100. The shear-layer thickness, 4, was defined as the distance between those 
points where the axial velocity exceeds urnin by 0.05 and 0.95 times the value of (urn%- z.t&J 
at that value of x; urnin was of course negative since the shear layer bounds a recirculating 
region. 

In studying the behaviour of predictions of the separated shear layer, all finite-difference 
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Figure 8(a). Dependence on velocity direction upstream of fence tip on y-grid refinement. VDS Grid 1 in 
x-direction, Re = 100. A, standard Grid 1 y-mesh with Ay/h = 0.014 at fence tip; +, Ay/h = 0.04; 0, Ay/h = 0.20 
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Figure 8(b). Dependence of kinetic energy on y-grid refinement. Legend as in Figure 8(a) 
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Figure 9(a). Shear layer growth, HDS. Re =:A, 30; 0,50; 0 , 7 0 ;  +, 100 

results presented in this section were obtained using grid 1. Resolution of the boundary layer 
at separation is not really adequate (see previous section), but this grid is finer in the 
separated region than grid-3; we believe that it is therefore a suitable compromise. 

The HDS results at different Reynolds number, which are shown in Figure 9(a), do not 
coincide even in the region where the axial pressure gradient is roughly zero ([(x/h)/Re]”” 5 
0.25). They also predict both a thicker shear layer (at a given x) and a greater rate of growth 
at higher Reynolds numbers. This is symptomatic of numerical diffusion and leads to early 
reattachment (see Section 4.3). In contrast, the VDS results in Figure 9(b) coincide at all 
Reynolds numbers in the range under study, except that the results at Re= 100 are distinct 
in the region of positive pressure gradient. It is probably unrealistic to look for much 
significance in this latter observation, because it is difficult to analyse the development of the 
shear layer in the region where the layer is perturbed by the influence of the upper boundary 
and the splitter plate. 

The FE results for different Reynolds numbers, which are shown in Figure 9(c), also 
coincide to reasonable accuracy. These predictions were obtained using the grid in Table I1 
at Re = 100, but with the downstream grid compressed at lower Reynolds number to 
maintain a constant number of nodes in the recirculating region. The FE grid is in fact finer 
than the grid-1 used for the F?D calculations at all Reynolds numbers, but FE predictions 
with any coarser grid has irregular streamlines. This difference in the grids may explain the 
rather unexpected results seen in Figure 9(d), which shows the various predictions of 
shear-layer growth at Re = 100: the FE calculation predicts a greater thickness for the shear 
layer than the VDS. The reason for this is not clear: numerical diffusion will usually, and 
always with standard hybrid differencing, lead to too rapid a growth of regions of high 
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Figure 9(c). Shear layer growth, FE. Legend as in Figure 9(a) 
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Figure 9(d). Shear layer growth, Re= 100. U, HDS:A, VDS; 0, FE;-------LOck‘s analytic solution for plane 
mixing layer 

vorticity if the mesh Reynolds numbers exceed two; it is difficult to see how vector 
differencing could lead to the opposite result. However, the shear layer in the FE calculation 
is more energetic and more strongly deflected than in the VDS prediction; thus a simple 
comparison of the rate of shear-layer growth may be unrealistic if the different shear layers 
do not develop in comparable conditions but, for example, in varying pressure gradients. 

solution for the classical plane mixing layer was used to calculate the growth of 
the 0.05-0.95 thickness, and this result is included in Figure 9(d). In view of the preceding 
remarks, we believe that the close agreement between the HDS results at Re = 100 and the 
classic mixing layer is wholly fortuitous, and that the actual growth rate of the separated 
shear layer is a little lower than the latter. This is not surprising as the separated shear layer 
is subjected to a significant transverse pressure gradient during its initial development. it 
could be argued that this will tend to inhibit its growth, but not destroy the classic 
dependence on (x/Re)l”, since this transverse gradient is, initially at least, fairly constant 
with x. 

4.3. Surface pressures and bubble length 
Figure 10 shows various predictions of the surface-pressure coefficient, C,, defined as 

c, = (P - PO>/lPU& (18) 
where p is the pressure on the splitter plate and uo and po are field values at the inlet. The 
pressure coefficient is plotted against (x/h)/Re because as indicated in Section 2.3, flow 
variations in the axial direction are expected to scale linearly with Reynolds number at 
sufficiently high values of Re. However, we cannot expect a relation of this form to persist 
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Figure lO(a). Surface pressure coefficients. VDS, Re =:A, 20; 0 , 3 0 ;  0 , 5 0 ;  +, 70; 0,100 

down to Reynolds numbers at which the shear-layer growth still maintains the dependence 
on 

The VDS results indeed collapse only for R r 5 0  [Figure lO(a)] while it can be seen in 
Figures 9(b) and 9(c) that calculations of shear-layer growth scale accurately with Re1’2 at 
least down to Re = 30. The FE results (not shown) have a similar behaviour but, in contrast, 
the HDS calculations of the pressure coefficient show a significantly greater spread. Figure 
10(b) shows predictions for Re = 100 obtained using the three numerical methods; clearly 
the FE method gives the slowest and the HDS the most rapid pressure recovery. Note also 
that the base pressure is significantly lower for the FE prediction; this is precisely what would 
be expected from the results presented in Section 4.1, where it was seen that the separating 
boundary layer was significantly more energetic for the FE prediction. The trend in the 
results shown in Figure 10(b) is not the same as that observed in 9(d), but, as argued earlier, 
the pressure recovery-and the distance to reattachment-are not determined solely by the 
growth of the shear-layer thickness. It was pointed out in Section 4.1 that the magnitude and 
direction of the flow around separation are also likely to be important in determining the 
downstream flow; recall that grid 1 was used for the finite-difference predictions of Figures 9 
and 10, whereas an even finer grid (near the fence) was required to obtain details of the 
separating boundary layer close to those given by the FE method (Section 4.1). 

Figure 11 is a plot of the fence surface-pressure coefficients for Re = 100, predicted using 
VDS and HDS with grid 1, VDS with grid 3, and the standard FE grid in Table 11. There is a 
very rapid fall in pressure on the front of the fence as y/h -+ 1, and clearly the finite- 
difference solutions on a coarser grid tend to smooth out the rapid changes predicted in the 
FE solution. VDS with grid 3 is better in this respect, as expected. Since staggered grids have 
to be used for the finite-difference methods, the difference procedures used in the region 

found at high Reynolds number. 



84 I. P. CASTRO, K. A. CLEFE AND M. J. NORGETT 

c 

a8 
U 
._ 
._ 
L L 

0 

E 

z 
u) 

a 
a8 

0 

3 
v) 

c L 

-2.0 t 1 
-2.2 I I 1 I I I I I I I 

0.0 '05 0-1 0.15 0.2 0-25 0.3 0.35 0.L 0.L5 

( %/h) I Re 

Figure lO(b). Surface pressure coefficients. A, HDS; 0, VDS; 0, FE 

Fence surface pressures 

Figure 11. Fence surface pressures. Re= 100. A, HDS Grid 1; 0, VDS Grid 1; X ,  VDS Grid 3; f, FE 
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surrounding the fence tip must be defined with great care-the details differ for each variable 
and will not be discussed here. There is an increasingly large discontinuity in the pressure 
gradient along, say, y/h = 1 at x/h = 0 as Re increases; this is associated of course with the 
fact that v/u must tend to infinity (as Re 4 w) just outside the viscous boundary layer at 
separation. It is clear that increasingly fine grids would be required to resolve this region of 
the flow as Re increases; presumably the necessary resolution should scale roughly with 
Re1”. The implications of this for computation of the corresponding high Reynolds-number 
turbulent flow are discussed later. 

The final results of the various predictions are given in Figure 12, where the normalized 
distance to reattachment, L/h, of the separated shear layer is plotted for the VDS and HDS 
grid 1, and standard FE solutions. It is clear that differences between the various solutions 
increase with Reynolds number. In particular, hybrid differencing does not lead to a linear 
growth of L with Re, as originally anticipated, and as the previous results would suggest; 
VDS solutions, however, do exhibit the expected behaviour, although the predicted URe is 
not as high as that given by the FE calculations. In view of the results discussed in Section 
4.1, we believe that this must be due almost entirely to inadequate resolution near the plate. 
Since in the VDS solutions, the downstream surface pressures and shear-layer growth rate 
have the expected behaviour for Re 2 30, it is difficult to explain too low a value of LIRe on 
grid deficiencies downstream of the plate. The one case where grid resolution near the fence 
was improved (VDS, Re = 100, grid 3) had a rather coarser grid downstream (limited by the 
maximum allowable number of grid nodes), and consequently the prediction did not show a 
larger L/h. A further increase in the number of grid nodes in the axial direction to allow finer 
resolution near the plate without grid degradation elsewhere, would, we believe, increase the 

25 0 - 

22 5 

2 0 0  

- 

- 

c 
‘j 1 7 5 -  

b 1 5 0 -  
L 

C 
a, - 
a, 1 2 5 -  

& 1 0 0 -  

- 
n 
n 

7 5 -  

5 0 -  

2 5 -  

0 0  i 
0 0  15 30 L5 60 75 90 105 120 

Reynolds number 

Figure 12. Variation of bubble length with Reynolds number. A, HDS; 0, VDS; 0, FE 



86 I. P. CASTRO, K. A. CLIFFE AND M. J. NORGE'IT 

slope of the L vs. Re predictions for VDS, but would not change the basic difference 
between the HDS and VDS solutions. 

5 .  DISCUSSION AND CONCLUSIONS 

We have seen that the nature and significance of the errors in our calculations depend first 
on the particular numerical method, but also on the region of the flow where each method is 
employed. In the irrotational region upstream of the boundary layer on the front of the 
plate, there is a balance between pressure gradients, which enter the equations of fluid flow 
as source terms, and the inertial forces, which introduce convective terms. In this region the 
two finite-difference schemes are inaccurate because they do not conserve energy, and the 
resulting errors in the predicted flow may subsequently be convected downstream of the 
barrier. The finite-element method, on the contrary, does not invoke upwinding and is more 
nearly akin to a central-difference scheme; it therefore behaves more satisfactorily in the 
irrotational region because the integrals of motion, in particular the kinetic energy, are more 
nearly conserved. The penalty to pay for this advantage is that it is necessary to use a refined 
grid that resolves the boundary layer; otherwise, the solution of the flow equations is beset 
with wiggles. 

We have remarked that laminar flow over a plate at Re = O(100) is qualitatively similar to 
turbulent flow at high Reynolds number, so that the irrotational flows in the two cases must 
correspond. Even if there is turbulence in the upstream flow, the flow equations have the 
same dominant terms, which require for their accurate solution a numerical scheme that 
conserves energy. However, it is then still necessary to resolve the much thinner boundary 
layer at high Reynolds numbers with a very fine grid, in order to avoid oscillatory solutions. 
On the other hand, schemes like HDS and VDS maintain stability by introducing dissipation 
into their description of the convective terms in the flow equations; it is not then essential to 
resolve the boundary layer. But such methods, as we have seen, introduce significant errors 
in the irrotational region, principally associated with energy loss from the flow. However, 
such errors are bounded and may not be much larger for Re = 0(105) than they are in the 
present case (Figure 5)-they could be reduced by refining the grid. Our results show that 
flow around separation, which is important in determining the characteristics of the down- 
stream flow, can be predicted with acceptable accuracy using such methods, provided that 
the grid near the plate is sufficiently fine-it seems more important to resolve the flow in the 
regions of rapid gradients just outside the boundary layer (e.g. -1 < x/h < 0, Figure 7) than 
further upstream where mesh Reynolds numbers are actually higher. An adequate grid must 
have mesh spacings no larger than a few per cent of the plate height in that region. This may 
not resolve the boundary layer at high Reynolds number, but is sufficient for reasonably 
accurate prediction of the potential flow around separation. 

The characteristics of the flow in the downstream region are quite different: pressure 
gradients have less significance and the equations of motion impose a balance between 
viscous and inertial forces, particularly in the shear layer. In fact these differences in the 
basic character of the flow preclude the choice of a single numerical method that is ideal both 
in front and behind the barrier. In assessing the performance in the downstream region of 
the various methods considered in this paper, we find that HDS is certainly inadequate in 
comparison with the higher-order schemes. The simple upwinding technique in the hybrid 
scheme introduces numerical difision that leads to a too rapid spread of vorticity, and as a 
result to premature reattachment of the separated shear layer. Since the recirculation regions 
are very similar in size for Re = O(100) and Re = 0(105), we would expect to find similar 
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numerical errors, so that simple low-order schemes like HDS will not be very satisfactory for 
calculations of turbulent flow at high Reynolds numbers. A major conclusion of this work is 
that such schemes should be used with great caution. 

We cannot, of course, infer conversely that the VDS or FE methods, which seem to be 
adequate for predicting laminar flows, will also perform well in studies of turbulent flow. 
(Indeed, as noted earlier, the latter requires resolution of the boundary layer on the front of 
the plate, so would probably be impossible to apply directly in a Re = lo5 situation). The 
equations of the various presently favoured models of turbulence are more complex and 
involve additional equations representing, for example, transport of turbulence kinetic 
energy or shear stress. The stability of the several equations therefore depends not only on 
their separate representation in difference form, but also on the non-linear coupling between 
the various variables. Despite this uncertainty, we believe there is a need to seek for a more 
accurate and robust numerical method, which can be applied with confidence to flows that 
have distinct regions with quite different characteristics. Such a method must involve a 
compromise between enhancing stability and minimizing numerical diffusion. The promising 
approach of Hughes and Brooks42 uses different discretizations of the bulk of the flow and 
the ‘boundary layer’ regions; theirs was a finite-element method, but the idea could be used 
with finite differences. However, there is an immediate opportunity to apply even the 
simplest higher-order schemes like VDS, or for example, the relatively straightforward 
third-order method of 

Finally, we should emphasize that we have not overtly sought for a definitive solution for 
laminar flow over a flat plate. The particular flow geometry, and the numerical methods used 
to solve this problem, have been chosen rather to highlight difficulties that will also arise in 
calculations of complex flow at high Reynolds number using those methods now in common 
use. Nevertheless, the finite-element solution seems to be reasonably accurate and we look 
forward to comparing these results with experimental data when they become available. 

to calculations of turbulent flow. 
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